


# 6AB0460Txx-xxxx 驱动器



| 主要参数    |             |
|---------|-------------|
| Vcc     | 15V         |
| VG      | +15V, -9V   |
| P, MAX  | 4W          |
| IG, MAX | ±60A        |
| fs, MAX | 5kHz        |
| ТА      | -40°C ~85°C |
| 绝缘耐压    | 6000Vac     |

#### 典型应用

- 风电变流器
- 储能变流器

#### 特征

### **RoHS**

• 六通道 IGBT 驱动器

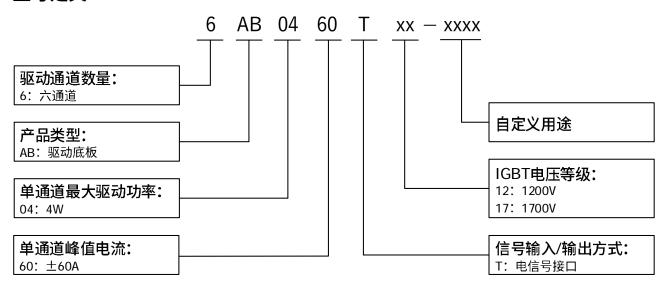
COMPLIANT

- 功率器件最高电压 1700V
- 单通道驱动功率 4W, 峰值电流 ±60A
- 电源电压输入 +15V
- 适配 62mm、EconoDual™3、PrimePack™3
  等多种封装的 IGBT 模块
- 适配 ANPC 和 NPC1 I 型三电平拓扑

| • | 集成隔离 DC/DC 电源   | 第 12 页 |
|---|-----------------|--------|
| • | 集成原边 / 副边电源欠压保护 | 第12页   |
| • | 集成 PWM 互锁功能     | 第12页   |
| • | 集成 VCE 短路保护     | 第13页   |
| • | 集成软关断           | 第14页   |
| • | 集成关断时序管理        | 第 14 页 |

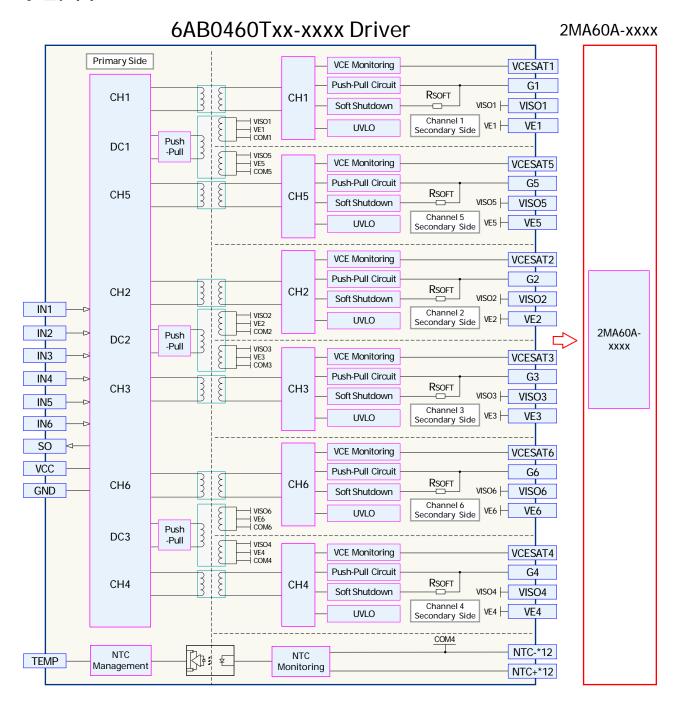
## 描述

6AB0460Txx-xxxx 是一款基于青铜剑 ASIC 芯片的 I型三电平的六通道、中功率、高绝缘电压、紧凑型、高可靠性驱动器,针对中功率、高可靠性等领域设计而成。


6AB0460Txx-xxxx 驱动器适用于 1700V 及以下多种 封装 IGBT 模块搭建的 ANPC 和 NPC1 I 型三电平拓扑, 驱动核心板固定在功率单元外壳或专门设计的固定底座 上和 2MA60A-xxxx 门极板配套使用。

#### 机械尺寸

机械尺寸图:参见第16页




# 型号定义





## 原理框图





# 接口定义

## P1端子接口定义

| 管脚 | 符号                | 说明               | 管脚 | 符号      | <br>说明           |
|----|-------------------|------------------|----|---------|------------------|
| 1  | 1 to 20           | 和 20 脚短接         | 16 | IN2     | 2 通道(T2 管)触发信号输入 |
| 2  | VCC <sup>2)</sup> | 供电电源输入+          | 17 | GND     | 信号 / 功率地         |
| 3  | VCC               | 供电电源输入+          | 18 | NTC2-1  | 外部 NTC2 的 1 脚    |
| 4  | VCC               | 供电电源输入+          | 19 | NTC2-2  | 外部 NTC2 的 2 脚    |
| 5  | GND               | 信号 / 功率地         | 20 | 1 to 20 | 和1脚短接            |
| 6  | SO                | 故障信号输出           | 21 | GND     | 信号 / 功率地         |
| 7  | GND               | 信号 / 功率地         | 22 | IN3     | 3 通道(T3 管)触发信号输入 |
| 8  | GND               | 信号 / 功率地         | 23 | GND     | 信号 / 功率地         |
| 9  | GND               | 信号 / 功率地         | 24 | IN4     | 4 通道(T4 管)触发信号输入 |
| 10 | IN1               | 1 通道(T1 管)触发信号输入 | 25 | GND     | 信号 / 功率地         |
| 11 | GND               | 信号 / 功率地         | 26 | IN5     | 5 通道(T5 管)触发信号输入 |
| 12 | NTC1-1            | 外部 NTC1 的 1 脚    | 27 | GND     | 信号 / 功率地         |
| 13 | NTC1-2            | 外部 NTC1 的 2 脚    | 28 | IN6     | 6 通道(T6 管)触发信号输入 |
| 14 | N.C               | 悬空               | 29 | GND     | 信号 / 功率地         |
| 15 | GND               | 信号 / 功率地         | 30 | TEMP    | NTC 采样输出 +       |

注: 1) 默认配置接口 30pin 牛角连接器,型号为: 230-011-830-209,品牌:正凌。

## P2端子接口定义

| 管脚 | 符号     | 说明            |  |
|----|--------|---------------|--|
| 1  | NTC1-1 | 外部 NTC1 的 1 脚 |  |
| 2  | NTC1-2 | 外部 NTC1 的 2 脚 |  |

注:默认配置接口 2pin 连接器,型号为: B2B-XH-A,品牌: JST。

## P3端子接口定义

| 管脚 | 符号     | 说明            |  |
|----|--------|---------------|--|
| 1  | NTC2-1 | 外部 NTC2 的 1 脚 |  |
| 2  | NTC2-2 | 外部 NTC2 的 2 脚 |  |

注:默认配置接口 2pin 连接器,型号为:B2B-XH-A,品牌:JST。

<sup>2)</sup> 原边接口输入兼容三种端子 P1/P4/P5, 可根据客户要求调整。

<sup>3)</sup> VCC 默认为 15V 输入,驱动器内部设置有 24V 转 15V 降压电路,降压电路未焊接,为预留功能,可根据客户需求调整。



## P4端子接口定义

| 管脚 | 符号   | 说明               | 管脚 | 符号    | 说明         |
|----|------|------------------|----|-------|------------|
| 1  | GND  | 信号 / 功率地         | 14 | GND   | 信号 / 功率地   |
| 2  | TEMP | NTC 采样输出 +       | 15 | GND   | 信号 / 功率地   |
| 3  | GND  | 信号 / 功率地         | 16 | GND   | 信号 / 功率地   |
| 4  | IN1  | 1 通道(T1 管)触发信号输入 | 17 | GND   | 信号 / 功率地   |
| 5  | IN2  | 2 通道(T2 管)触发信号输入 | 18 | GND   | 信号 / 功率地   |
| 6  | SO   | 故障信号输出           | 19 | GND   | 信号 / 功率地   |
| 7  | IN3  | 3 通道(T3 管)触发信号输入 | 20 | GND   | 信号 / 功率地   |
| 8  | IN4  | 4 通道(T4 管)触发信号输入 | 21 | GND   | 信号 / 功率地   |
| 9  | IN5  | 5 通道(T5 管)触发信号输入 | 22 | GND   | 信号 / 功率地   |
| 10 | IN6  | 6 通道(T6 管)触发信号输入 | 23 | GND   | 信号 / 功率地   |
| 11 | GND  | 信号 / 功率地         | 24 | FOUT2 | UART 自定义协议 |
| 12 | VCC  | 供电电源输入 +         | 25 | VCC   | 供电电源输入+    |
| 13 | VCC  | 供电电源输入 +         |    |       |            |

注: 1) 默认配置接口 25pin 连接器,型号为: 10625106 ,品牌: 东莞跃展。

## P5端子接口定义

| 管脚 | 符号   | 说明               | 管脚 | 符号  | 说明       |
|----|------|------------------|----|-----|----------|
| 1  | VCC  | 供电电源输入 +         | 9  | GND | 信号 / 功率地 |
| 2  | VCC  | 供电电源输入 +         | 10 | GND | 信号 / 功率地 |
| 3  | IN1  | 1 通道(T1 管)触发信号输入 | 11 | GND | 信号 / 功率地 |
| 4  | IN2  | 2 通道(T2 管)触发信号输入 | 12 | GND | 信号 / 功率地 |
| 5  | SO   | 故障信号输出           | 13 | GND | 信号 / 功率地 |
| 6  | IN3  | 3 通道(T3 管)触发信号输入 | 14 | GND | 信号 / 功率地 |
| 7  | IN4  | 4 通道(T4 管)触发信号输入 | 15 | GND | 信号 / 功率地 |
| 8  | TEMP | NTC 采样输出 +       |    |     |          |

注: 1) 默认配置接口 15pin 连接器,型号为: 6222-15MHS0B01, 品牌: WCON。

<sup>2)</sup> 端子未焊接,可根据客户需求调整。

<sup>2)</sup> 端子未焊接,可根据客户需求调整。



### P7端子接口定义

| 管脚 | 符号      | 说明             | 管脚 | 符号      | 说明             |
|----|---------|----------------|----|---------|----------------|
| 1  | VCESAT1 | T1 管 VCE 退饱和检测 | 7  | N.C     | 悬空             |
| 2  | VE1     | T1 管副边地        | 8  | VISO5   | T5 管 15V 电源    |
| 3  | VE1     | T1 管副边地        | 9  | G5      | T5 管门极信号       |
| 4  | G1      | T1 管门极信号       | 10 | VE5     | T5 管副边地        |
| 5  | VISO1   | T1 管 15V 电源    | 11 | VE5     | T5 管副边地        |
| 6  | N.C     | 悬空             | 12 | VCESAT5 | T5 管 VCE 退饱和检测 |

注: 1) 默认配置接口 12pin 连接器,型号为: WF3963-WSH12B02,品牌: WCON。

### P8端子接口定义

| 管脚 | 符号      | 说明             | 管脚 | 符号      | 说明             |
|----|---------|----------------|----|---------|----------------|
| 1  | VCESAT2 | T2 管 VCE 退饱和检测 | 7  | N.C     | <del></del>    |
| 2  | VE2     | T2 管副边地        | 8  | VISO3   | T3 管 15V 电源    |
| 3  | VE2     | T2 管副边地        | 9  | G3      | T3 管门极信号       |
| 4  | G2      | T2 管门极信号       | 10 | VE3     | T3 管副边地        |
| 5  | VISO2   | T2 管 15V 电源    | 11 | VE3     | T3 管副边地        |
| 6  | N.C     | 悬空             | 12 | VCESAT3 | T3 管 VCE 退饱和检测 |

注: 1) 默认配置接口 12pin 连接器,型号为: WF3963-WSH12B02, 品牌: WCON。

## P9端子接口定义

| 管脚 | 符号      | 说明             | 管脚 | 符号      | 说明            |
|----|---------|----------------|----|---------|---------------|
| 1  | VCESAT6 | T6 管 VCE 退饱和检测 | 7  | N.C     | 悬空            |
| 2  | VE6     | T6 管副边地        | 8  | VISO4   | T4 管 15V 电源   |
| 3  | VE6     | T6 管副边地        | 9  | G4      | T4 管门极信号      |
| 4  | G6      | T6 管门极信号       | 10 | VE4     | T4 管副边地       |
| 5  | VISO6   | T6 管 15V 电源    | 11 | VE4     | T4 管副边地       |
| 6  | N.C     | 悬空             | 12 | VCESAT4 | T4管 VCE 退饱和检测 |

注: 1) 默认配置接口 12pin 连接器,型号为: WF3963-WSH12B02,品牌: WCON。

<sup>2)</sup> 兼容卧式端子,型号为: WF3963-WRH12B02, 品牌: WCON。

<sup>2)</sup> 兼容卧式端子,型号为:WF3963-WRH12B02,品牌:WCON。

<sup>2)</sup> 兼容卧式端子,型号为: WF3963-WRH12B02,品牌: WCON。



### P10端子接口定义

| 管脚 | 符号     |            | 管脚 | 符号   | <br>说明     |
|----|--------|------------|----|------|------------|
| 1  | NTC11+ | NTC 温度采样 + | 9  | N.C  |            |
| 2  | NTC12+ | NTC 温度采样 + | 10 | N.C  | 悬空         |
| 3  | NTC1+  | NTC 温度采样 + | 11 | N.C  | 悬空         |
| 4  | NTC2+  | NTC 温度采样 + | 12 | NTC- | NTC 温度采样 - |
| 5  | NTC3+  | NTC 温度采样 + | 13 | NTC- | NTC 温度采样 - |
| 6  | NTC4+  | NTC 温度采样 + | 14 | NTC- | NTC 温度采样 - |
| 7  | NTC5+  | NTC 温度采样 + | 15 | NTC- | NTC 温度采样 - |
| 8  | NTC6+  | NTC 温度采样+  |    |      |            |

注: 1) 默认配置接口 16pin 连接器, 型号为: WF2501A-WSH15B0X, 品牌: WCON。

## P11端子接口定义

| 管脚 | 符号    | 说明         | 管脚 | 符号     | 说明         |
|----|-------|------------|----|--------|------------|
| 1  | NTC-  | NTC 温度采样 - | 4  | NTC8+  | NTC 温度采样 + |
| 2  | NTC-  | NTC 温度采样 - | 5  | NTC9+  | NTC 温度采样 + |
| 3  | NTC7+ | NTC 温度采样 + | 6  | NTC10+ | NTC 温度采样+  |

注: 1) 默认配置接口 6pin 连接器,型号为: WF2501A-WSH06B05,品牌: WCON。

### P13端子接口定义

| 管脚 | 符号    | 说明         |  |
|----|-------|------------|--|
| 1  | NTC1+ | NTC 温度采样 + |  |
| 2  | NTC-  | NTC 温度采样 - |  |

注: 1) 默认配置接口 2pin 连接器,型号为: B2B-XH-A,品牌: JST。

### P14端子接口定义

| 管脚 | 符号    | 说明         |  |
|----|-------|------------|--|
| 1  | NTC2+ | NTC 温度采样 + |  |
| 2  | NTC-  | NTC 温度采样 - |  |

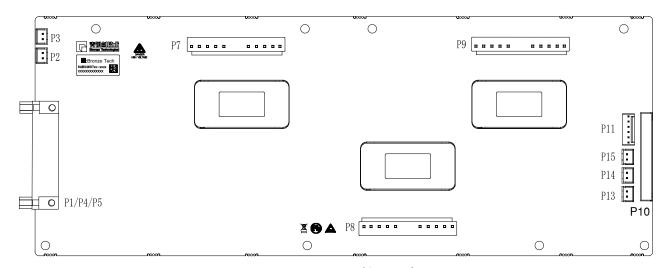
注: 1) 默认配置接口 2pin 连接器,型号为: B2B-XH-A,品牌: JST。

<sup>2)</sup> 端子未焊接,需搭配 NTC 电路使用,可根据客户需求调整。

<sup>2)</sup> 端子未焊接,需搭配 NTC 电路使用,可根据客户需求调整。

<sup>2)</sup> 端子未焊接,需搭配 NTC 电路使用,可根据客户需求调整。

<sup>2)</sup> 端子未焊接,需搭配 NTC 电路使用,可根据客户需求调整。




## P15端子接口定义

| 管脚 | 符号    | 说明         |  |
|----|-------|------------|--|
| 1  | NTC3+ | NTC 温度采样 + |  |
| 2  | NTC-  | NTC 温度采样 - |  |

注: 1) 默认配置接口 2pin 连接器,型号为: B2B-XH-A,品牌: JST。

2) 端子未焊接,需搭配 NTC 电路使用,可根据客户需求调整。



6AB0460Txx-xxxx 接口示意图



# 参数

### 绝对限值

| 参数                 | MIN | MAX  | UNIT |
|--------------------|-----|------|------|
| VCC to GND         | 14  | 16   | V    |
| IN1~IN4, SO to GND |     | 15   | V    |
| 门极驱动功率 1)          |     | 4    | W    |
| 门极驱动电流             | -60 | 60   | А    |
| 母线电压 <sup>2)</sup> |     | 2200 | V    |
| 供电电源最大电流 3)        |     | 650  | mA   |
| 最大开关频率             |     | 5    | kHz  |
| 原/副边绝缘电压           |     | 6000 | V    |
| 副 / 副边绝缘电压         |     | 4500 | V    |
| 运行温度 TA            | -40 | 85   | °C   |
| 存储温度 Ts            | -40 | 85   | °C   |
| 湿度 4)              |     | 95   | %    |
| 海拔高度 5)            |     | 4000 | m    |

注: 1) 在 TA 允许温度范围内,单通道最大输出功率。

- 2) 默认有源钳位参数下允许的最大母线电压。
- 3) 驱动板额定工况的最大值。
- 4) 不允许出现凝露现象。
- 5) 超过最大海拔高度应用请咨询深圳青铜剑技术公司。

### 供电电源

环境温度 TA=25℃,配合 2MA60A-xxxx 门极板进行测试,除非另有说明。

| 参数                    | 测试条件        | MIN | TYP | MAX | UNIT |
|-----------------------|-------------|-----|-----|-----|------|
| 供电电压 Vcc              | VCC to GND  |     | 15  |     | V    |
| 转换效率                  | Vcc=15V     |     | 80  |     | %    |
| 静态电流 IDDQ             | Vcc=15V,空载  |     | 255 |     | mA   |
| 副边全压 Vcco 1)          | VISO to COM | 24  |     | V   |      |
| 副边正压 V+               | VISO to VE  |     | 15  |     | V    |
| 副边负压 V- <sup>2)</sup> | COM to VE   | -9  |     |     | V    |

注: 1) 副边全压典型值为空载测试值。

2) 副边负压典型值为空载测试值。



#### 输入

环境温度 TA=25°C,配合 2MA60A-xxxx 门极板进行测试,除非另有说明。

| 参数              | <b>t</b>                              | 测试条件    | MIN | TYP | MAX | UNIT |  |
|-----------------|---------------------------------------|---------|-----|-----|-----|------|--|
|                 | 电压限值                                  | Vcc=15V |     | 15  |     | V    |  |
| INx 输入电压 Vin 1) | 开通门槛 VINH                             | Vcc=15V |     | 7.8 |     | V    |  |
|                 | 关断门槛 VinL                             | Vcc=15V |     | 5.5 |     | V    |  |
| 注: 1) 输入端需考虑电阻  | 注: 1) 输入端需考虑电阻分压,详见功能描述"触发信号 INx 输入"。 |         |     |     |     |      |  |

#### 输出

环境温度 TA=25°C,配合 2MA60A-xxxx 门极板进行测试,除非另有说明。

| 参数                                    | t .          | 测试条件              | MIN TYP MAX |       | UNIT |    |
|---------------------------------------|--------------|-------------------|-------------|-------|------|----|
| 门极输出电压 Vg                             | 开通 ON-State  | Vcc=15V           |             | 15    |      | V  |
| │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ | 关断 OFF-State | Vcc=15V           |             | -9    |      | V  |
| 门极电流 Ig                               | 开通 ON-State  | Vcc=15V           | 60          |       | 60   | Α  |
|                                       | 关断 OFF-State | Vcc=15V           | -60         |       |      | А  |
| SO 输出电压 Vso <sup>1)</sup>             | 正常状态         | Vcc=15V,Rso=2.2kΩ |             | 15    |      | V  |
| 30 制山屯压 750-7                         | 保护状态         | Vcc=15V,Rso=2.2kΩ |             |       | 0.7  | V  |
| SO 端电流 Iso                            |              | Vcc=15V,Rso=2.2kΩ |             |       | 20   | mA |
| NTC 电阻 <sup>2)</sup>                  |              |                   |             | 由IGBT | 模块决定 |    |

注: 1) RSO 为保护输出端 SO 上拉电阻,默认为 15V 上拉,可根据客户需求调整。

#### 保护

环境温度  $T_A=25$ °C,配合 2MA60A-xxxx 门极板进行测试,除非另有说明。

| 参         | 数           | 测试条件                       | MIN          | TYP  | MAX | UNIT |    |
|-----------|-------------|----------------------------|--------------|------|-----|------|----|
| 原边欠压保护    | 触发 Vccuv+   | Vcc=15V, VCC-GND           | 13.3<br>14.0 |      |     | V    |    |
| 阈值电压 1)   | 恢复 Vccuvr+  | Vcc=15V, VCC-GND           |              |      | V   |      |    |
| 短路保护阈值电应  | 立 Vref      | Vcc=15V                    | 10.2         |      | V   |      |    |
| 短路保护响应    | T1/T4/T5/T6 | Vec=15V Di=2.2k0 Ci=1n5    | 8.5          |      |     | us   |    |
| 时间 tsc 2) | T2/T3       | Vcc=15V,Ra=3.3kΩ,Ca=1nF    |              | 10.2 |     | us   |    |
| 软关断       | T1/T4/T5/T6 | 4.6                        | 4.6          | 4.6  |     | 4.6  | us |
| 时间 tsoft  | T2/T3       | Vcc=15V,Vge to 0V,100nF 负载 | 6.2          |      | us  |      |    |
| 保护锁定时间 tB | -           | RτB=150kΩ                  | 99           |      | ms  |      |    |

注: 1) 欠压保护时序图参见图 2。

<sup>2)</sup> NTC 电路未焊接,为预留功能,可根据客户需求调整。

<sup>2)</sup> 采用二极管电阻检测方式。



## 时序

环境温度 TA=25°C,配合 2MA60A-xxxx 门极板进行测试,除非另有说明。

| ź                                                                    | <br>参数    | 测试条件                  | MIN  | TYP  | MAX     | UNIT |
|----------------------------------------------------------------------|-----------|-----------------------|------|------|---------|------|
| 传输延时 <sup>1)</sup>                                                   | 开通延时 ton  | Vcc=15V,空载            | 1200 |      | ns      |      |
| 14期延り */                                                             | 关断延时 toff | Vcc=15V,空载            |      | 1200 |         | ns   |
| 外管输出信                                                                | 号上升时间 tr1 | RGON=1.82Ω, CGE=47nF  | 350  |      | ns      |      |
| 内管输出信                                                                | 号上升时间 tf1 | RGON=3.58Ω, CGE=47nF  | 350  |      | ns      |      |
| 外管输出信                                                                | 号下降时间 tr2 | Rgoff=2.98Ω,Cge=47nF  | 350  |      | ns      |      |
| 内管输出信:                                                               | 号下降时间 tf2 | Rgoff=14.58Ω,Cge=47nF | 350  |      | ns      |      |
| 注:1)开通传输延时为输入信号上升沿 10% 到门极信号上升沿 10%,关断传输延时为下降输入信号沿 10% 到门极信号下降沿 10%。 |           |                       |      |      | 降沿 10%。 |      |

## 安全和抗干扰

环境温度 TA=25℃,除非另有说明。

|                       | 参数               | 数值   | UNIT |
|-----------------------|------------------|------|------|
| 绝缘耐压 <sup>1)</sup>    |                  | 6000 | V    |
| 原边 - 副边 <sup>2)</sup> | 电气间隙             | 18   | mm   |
| 原心-副心-                | 爬电距离             | 23   | mm   |
| 副边 - 副边               | 电气间隙             | 9.5  | mm   |
|                       | 爬电距离             | 11   | mm   |
| ESD 静电防护              | 接触放电             | ±8   | kV   |
| ころり野宅切が               | 空气放电             | ±6   | kV   |
| 电快速瞬变脉冲群抗:            | 扰度 <sup>3)</sup> | ±4   | kV   |

注: 1) 测试条件为 6000V, 50Hz 交流电压, 1min。

- 2) 电气间隙和爬电距离,按照 IEC 60077-1 标准设计。
- 3) EMC 测试安装 GB/T 17626 规范执行。



### 功能描述

#### 电源及电源监控

这款驱动器配有 DC/DC 电源,可实现电源和门极 驱动电路的电气隔离。基本原理框图【见图1】。

驱动器的原边及六个通道的副边都分别配备有电源 监控电路,并实施欠压保护。

注意:驱动器需要稳定的供电电压!

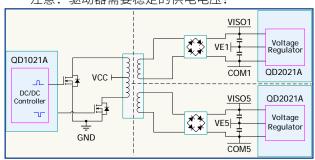



图 1 电源原理框图

#### 原边电源监控:

原边对电源电压 Vcc 进行监控并实施欠压保护动 作。当 Vcc 逐渐降低至欠压保护触发电压 Vccuv 时,将 触发欠压保护。六个副边驱动电路将锁定在关断状态, 使 IGBT 保持在关断;输出保护信号 SO【见图 2】。

当 Vcc 恢复到欠压恢复值 VccuvR, 驱动器将继续保 持保护状态一个锁定时间 tB, 再释放驱动电路关断锁定 状态,并恢复保护信号 SO。

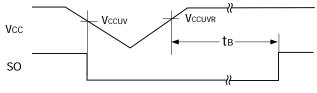



图 2 原边欠压保护逻辑图

### 副边电源监控:

副边电压在供电电压降低或负载超载情况下,会发 生电压下降。当副边电压全压 Vcco (VISO 至 COM 下同) 下降时,驱动器会优先稳住正压 V+(VISO 至 VE 下同) 为 +15V, 负压 V-(COM 至 VE 下同)逐渐抬升。当 V-抬升到-5V后,开始稳住负压,正压V+开始跟随全压 Vcco 下降。当 V+ 下降至欠压保护阈值 Vuv+,将启动副 边欠压保护。

副边欠压保护首先会将本通道驱动锁定在关断状 态,确保对应 IGBT 关断。同时向原边发送信号,使得 原边输出对应通道的保护信号 SOx。此时,其他通道也 会锁定在关断状态。当故障情况解除, Vcco 恢复后, 驱 动器会先恢复正压,再恢复负压。保护闭锁状态和 SO

信号将会等待一个闭锁时间 tB, 再恢复正常。

副边电压调节和欠压保护逻辑【见图 3】。

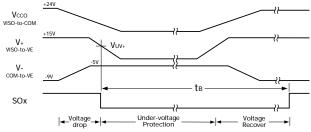



图 3 副边欠压保护逻辑图

#### 触发信号 INx 输入

触发信号由 INx 端口输入【见图 4】,默认状态 R1=1.8k $\Omega$ , R2=1.8k $\Omega$ , C1=100pF $_{\circ}$ 




图 4 INx 输入电路图

#### 传输逻辑

触发信号由 INx 端口输入,输入 IN1 对应 1 通道, 输入IN2对应2通道;为了防止IGBT损坏,正常工作 时,加了内外管的开通关断时序逻辑,先开内管(T2/ T3) 在开外管(T1/T4), 先关外管, 再关内管, 即开 通时, T2 管比 T1 管先开, T3 管比 T4 先开; 关断时, T1 管比 T2 管先关, T4 管比 T3 管先关。高电平将对应 的 IGBT 开通,低电平将对应的 IGBT 关断。

驱动器上增加了输入信号逻辑处理,T1和T3、T2 和 T4 逻辑互锁, 当 T1 和 T3 管、T2 和 T4 管对应的 PWM 控制信号输入同时为高时,锁住输入的 PWM 信号 使输出为低电平,IGBT关闭。T5和T6管没有逻辑限制, 只要接收到外部信号就开通或关断。

#### 保护信号输出

保护信号输出端 SO 内部为漏极开路形式【见图 5】。正常情况下, Oso 截止, SO 输出端为高电平。 当驱动器的某个通道出现保护时,对应通道的 Qso 将 导通,SO 变为低电平(接地)。默认状态 R3=100Ω, R4=2.2kΩ, Qso 管的过电流能力为 20mA。六个通道的 原边故障信号连接在一起,以表达整个驱动的保护信息。



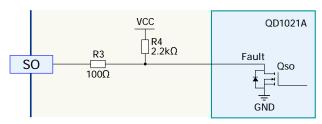



图 5 保护信号输出逻辑图

#### IGBT的开通和关断

当需要开通 IGBT 时,驱动器内部芯片内的 Qon 管打开,Qoff 管关闭,通过开通门极电阻 RGON 对 IGBT 的门极进行充电使 IGBT 开通。驱动器在内置芯片外部还扩展了一个开通 MOSFET,以拓展开通驱动电流到 60A。

当需要关断 IGBT 时,驱动器内部芯片内的 QOFF 管打开,QON 管关闭,通过关断门极电阻 RGOFF 对 IGBT 的门极进行放电,使 IGBT 关断。驱动器在内置芯片外部还扩展了一个关断 MOSFET,以拓展开通驱动电流到 -60A。

门极电阻 RGON 和 RGOFF 的选择,用户可咨询我们技术支持来进行设置,并进行出厂预配置。在安装到对应的 IGBT 模块上时,请确保已安装上合适的门极电阻。

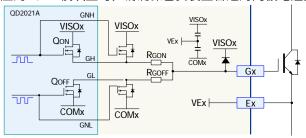



图 6 门极驱动电路图

#### IGBT短路保护

驱动器的 IGBT 短路保护使用 VCE 检测电路【见图7】,六个通道各自独立。短路保护功能只在 IGBT 开通的时候有效;在 IGBT 关断状态,触发信号会将 Qce 打开,使得 Vcedt 钳位在 COMx(相对 VEx 为 -10V 左右),比较器不动作。

当驱动器执行 IGBT 开通动作时,传输到副边的触发信号会将 Qce 关断,释放 VceDT 钳位状态。此时 IGBT 的 Vce 仍处于高水平,将通过 RA 电阻对 CA 电容进行充电,使得 VceDT 电平逐渐抬升。随后 IGBT 开通,Vce 迅速下降至 Vce-SAT,VceDT 也随之通过二极管放电至 Vce-SAT。由于 Vce-SAT 远低于保护触发值 VREF,比较器不动作,保护不启动。

在 IGBT 发生短路时,IGBT 的集电极和发射极两端 的电压很高,将通过 Ra 电阻对 Ca 电容进行充电,使得 VCEDT 电平逐渐抬升,从而使 VCEDT > 10.2V,比较器发生翻转,从而报出故障,保护启动。

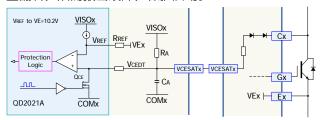



图 7 短路保护示意图

#### 一类短路保护:

当 IGBT 发生一类短路(即直通)时,由于直通电流增长很快,IGBT 将迅速退饱和,VCE 很快回到高位。 因此 CA 将会一直充电,使得 VCEDT 一直增长直到钳位至 VISOx(相对 VEx 为 +15V)。在此过程中,VCEDT 会越过 VREF(10.2V),使得比较器翻转,从而启动短路保护逻辑。

短路保护逻辑会先把 IGBT 迅速关断,保障 IGBT 的安全。同时向原边发出信息,使得 SO 管脚拉低,以表达出保护状态。保护状态将会锁定一个 tB 时间,然后自动恢复到正常状态。

六个通道的保护电路是相互独立的,但是原边 SO 连接在一起,所以在一个通道发生短路保护的情况下,其它通道也会关断【见图 8】。

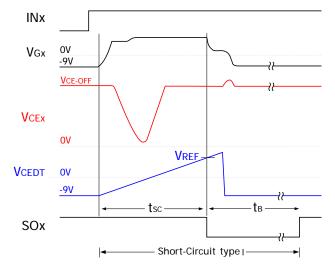



图 8 一类短路保护逻辑图

#### 二类短路保护:

当 IGBT 发生二类短路(相间短路)时,由于短路 回路阻抗较大,电流增长较缓慢。IGBT 仍能正常进入饱 和状态,然后随着短路电流的增加,VcE 逐渐增加直至 退饱和【见图 9】。驱动器只有在 IGBT 退饱和时才能检 测出短路状态,启动短路保护。因此,二类短路保护的 响应时间会比一类短路保护响应时间要更长。



当 IGBT 在低母线电压下发生直通短路时,由于母 线电压低导致直通电流较小,IGBT 也会呈现与二类短路 保护相同的特征,相应的保护响应时间也会加长。

注意: 二类短路时,由于短路回路阻抗随机性较大,使得 IGBT 退饱和时刻不确定性较大。因此在 IGBT 保护动作前,有可能已产生较大的热量损耗而导致 IGBT 损坏。即,此种状态下驱动器短路保护并不能保证 IGBT 不损坏,系统需辅以过流保护等其他手段,以保障 IGBT 的安全。

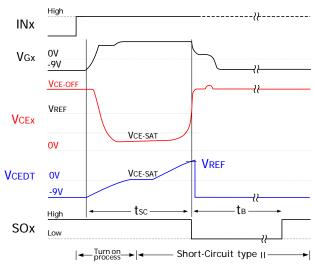



图 9 二类短路保护逻辑图

#### 软关断功能

由于连接 IGBT 模块的母线存在杂散电感,在 IGBT 短路保护关断时会产生较大的尖峰电压,为抑制该尖峰电压,并不影响正常关断速度,就需要加入软关断功能。

该功能在发生 IGBT 短路保护时,先将驱动门极输出置为高阻状态,依靠门极对地电阻进行放电,门极电压缓慢下降。待门极电压下降到设定阈值后,驱动门极输出对 COM 短路,快速关断 IGBT【见图 10】。

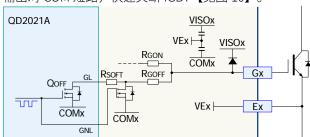



图 10 软关断示意图

#### 温度采样和保护

驱动器采用电阻分压的方法对 NTC 电阻两端电压进行采样,然后通过压频转换技术将电压转换为频率输出,并通过光耦实现原副边隔离。输出频率 Four 与采样电压 VNTC 关系见公式 1。

#### 公式 1:

Fout=3.276+Vntc(V)\*5.24228(kHz) 注: Vntc=5V\*R/(R+1.5KΩ) R=Rntc//10KΩ

驱动器共设 12 路温度检测电路,单片机将 12 路温度滚动循环输出,通过频率编码的形式依次传递给上位控制器。NTC 温度反馈采用不同时间长度的高电平信号作为辨识标志位,其中,第一路采样高电平长度定义为 10ms,其他路采样依次为 (5+5n)ms。每一路采样发送持续时间为 100ms。频率信号高电平为 15V(范围14.5V~15.15V),低电平为 0V(范围 0~0.5V),输出电流带载能力≥ 3mA。

注意:本 NTC 电路未焊接,为预留功能,可根据客户需求调整。

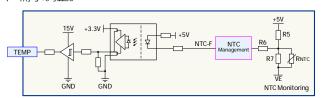
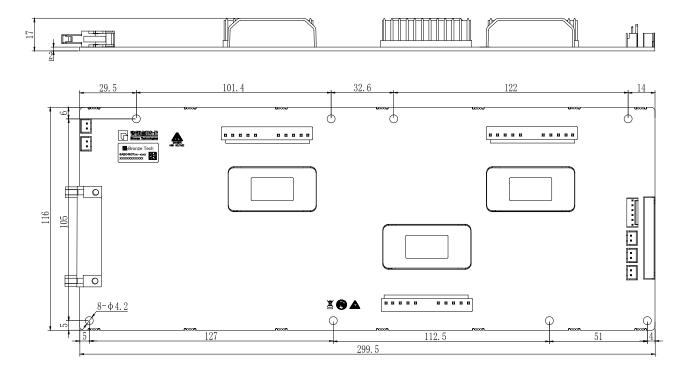




图 11 温度采样示意图

版权所有: © 深圳青铜剑技术有限公司



# 机械结构图



注: 1) 图示单位为 mm;

2) 图中公差符合 ISO 2768-1。



### 版本说明

| 版本号  | 变更内容 | 修订日期        |
|------|------|-------------|
| V1.0 | 新发布  | 01-Nov-2021 |

#### 注意事项

• IGBT 模块和驱动器的任何操作,均需符合静电敏感设备保护的通用要求,请参考国际标准 IEC 60747-1/IX 或欧洲标准 EN100015。为保护静电感应设备,要按照规范处理 IGBT 模块和驱动器(工作场所、工具等都必须符合这些标准)。



#### 如果忽略了静电保护要求,IGBT 模块和驱动器可能都会损坏!

- 驱动器上电前,请确认驱动器和控制板连接可靠,无空接、虚接、虚焊现象。
- 驱动器安装后,其表面对大地电压可能会超过安全电压,请勿徒手接触!



使用中,可能危及生命,务必遵守相关的安全规程!

## 免责声明

青铜剑技术提供的技术和可靠性数据(包括数据手册等)、设计资源(包括 3D 模型、结构图、AD 模型)、应用指南、应用程序或其他设计建议、工具、安全信息和资源等,不包含所有明示和暗示的保证,包括对交付、功能、特定用途、适用性保证和不侵犯第三方知识产权的保证。

这些资源旨在为使用青铜剑技术产品进行开发的熟练工程师提供。为您全权负责:

- (1) 为您的产品选择适当的青铜剑技术产品;
- (2) 设计、验证和测试您的产品;
- (3) 确保您的产品符合适用的要求。

青铜剑技术保留随时修改数据、文本和资料的权力,恕不另行通知。

请随时访问青铜剑技术网站 www.qtitec.com 或微信公众号,以获取最新的资料。

青铜剑技术授权您仅在应用青铜剑技术产品的开发过程,使用相应的资源;禁止以其他方式复制和展示这些资源。青铜剑技术没有通过这些资源,授予任何青铜剑技术的知识产权或第三方知识产权许可。

对于因您使用这些资源而引起的任何索赔、损害、损失和成本,青铜剑科技不承担任何责任,并且有权追偿因 侵犯知识产权而造成的损失。



#### 青铜剑科技集团|深圳青铜剑技术有限公司

地址:中国广东省深圳市南山区留学生创业大厦二期22楼

官网:www.qtjtec.com 技术电话:+86075533379866 技术邮箱:support@qtjtec.com



微信公众号

版权所有: © 深圳青铜剑技术有限公司